Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114100, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607921

RESUMEN

Hippocampal pyramidal neuron activity underlies episodic memory and spatial navigation. Although extensively studied in rodents, extremely little is known about human hippocampal pyramidal neurons, even though the human hippocampus underwent strong evolutionary reorganization and shows lower theta rhythm frequencies. To test whether biophysical properties of human Cornu Amonis subfield 1 (CA1) pyramidal neurons can explain observed rhythms, we map the morpho-electric properties of individual CA1 pyramidal neurons in human, non-pathological hippocampal slices from neurosurgery. Human CA1 pyramidal neurons have much larger dendritic trees than mouse CA1 pyramidal neurons, have a large number of oblique dendrites, and resonate at 2.9 Hz, optimally tuned to human theta frequencies. Morphological and biophysical properties suggest cellular diversity along a multidimensional gradient rather than discrete clustering. Across the population, dendritic architecture and a large number of oblique dendrites consistently boost memory capacity in human CA1 pyramidal neurons by an order of magnitude compared to mouse CA1 pyramidal neurons.


Asunto(s)
Región CA1 Hipocampal , Dendritas , Células Piramidales , Humanos , Células Piramidales/fisiología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Animales , Masculino , Ratones , Dendritas/fisiología , Femenino , Persona de Mediana Edad , Anciano , Ritmo Teta/fisiología , Adulto
3.
Nat Commun ; 13(1): 2864, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606448

RESUMEN

Primary sensory areas constitute crucial nodes during perceptual decision making. However, it remains unclear to what extent they mainly constitute a feedforward processing step, or rather are continuously involved in a recurrent network together with higher-order areas. We found that the temporal window in which primary visual cortex is required for the detection of identical visual stimuli was extended when task demands were increased via an additional sensory modality that had to be monitored. Late-onset optogenetic inactivation preserved bottom-up, early-onset responses which faithfully encoded stimulus features, and was effective in impairing detection only if it preceded a late, report-related phase of the cortical response. Increasing task demands were marked by longer reaction times and the effect of late optogenetic inactivation scaled with reaction time. Thus, independently of visual stimulus complexity, multisensory task demands determine the temporal requirement for ongoing sensory-related activity in V1, which overlaps with report-related activity.


Asunto(s)
Corteza Visual , Percepción Visual , Percepción Auditiva/fisiología , Optogenética , Estimulación Luminosa , Tiempo de Reacción/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología
4.
Commun Biol ; 4(1): 709, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112934

RESUMEN

Diversity of cell-types that collectively shape the cortical microcircuit ensures the necessary computational richness to orchestrate a wide variety of behaviors. The information content embedded in spiking activity of identified cell-types remain unclear to a large extent. Here, we recorded spike responses upon whisker touch of anatomically identified excitatory cell-types in primary somatosensory cortex in naive, untrained rats. We find major differences across layers and cell-types. The temporal structure of spontaneous spiking contains high-frequency bursts (≥100 Hz) in all morphological cell-types but a significant increase upon whisker touch is restricted to layer L5 thick-tufted pyramids (L5tts) and thus provides a distinct neurophysiological signature. We find that whisker touch can also be decoded from L5tt bursting, but not from other cell-types. We observed high-frequency bursts in L5tts projecting to different subcortical regions, including thalamus, midbrain and brainstem. We conclude that bursts in L5tts allow accurate coding and decoding of exploratory whisker touch.


Asunto(s)
Ratas/fisiología , Corteza Somatosensorial/fisiología , Tacto , Vibrisas/fisiología , Potenciales de Acción , Animales , Masculino , Neuronas/fisiología , Ratas Wistar
5.
Front Behav Neurosci ; 12: 231, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30337861

RESUMEN

The detection of objects in the external world improves when humans and animals integrate object features of multiple sensory modalities. Behavioral and neuronal mechanisms underlying multisensory stimulus detection are poorly understood, mainly because they have not been investigated with suitable behavioral paradigms. Such behavioral paradigms should (i) elicit a robust multisensory gain, (ii) incorporate systematic calibration of stimulus amplitude to the sensory capacities of the individual subject, (iii) yield a high trial count, and (iv) be easily compatible with a large variety of neurophysiological recording techniques. We developed an audiovisual stimulus detection task for head-fixed mice which meets all of these critical behavioral constraints. Behavioral data obtained with this task indicated a robust increase in detection performance of multisensory stimuli compared with unisensory cues, which was maximal when both stimulus constituents were presented at threshold intensity. The multisensory behavioral effect was associated with a change in the perceptual performance which consisted of two components. First, the visual and auditory perceptual systems increased their sensitivity meaning that low intensity stimuli were more often detected. Second, enhanced acuity enabled the systems to better classify whether there was a stimulus or not. Fitting our data to signal detection models revealed that the multisensory gain was more likely to be achieved by integration of sensory signals rather than by stimulus redundancy or competition. This validated behavioral paradigm can be exploited to reliably investigate the neuronal correlates of multisensory stimulus detection at the level of single neurons, microcircuits, and larger perceptual systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...